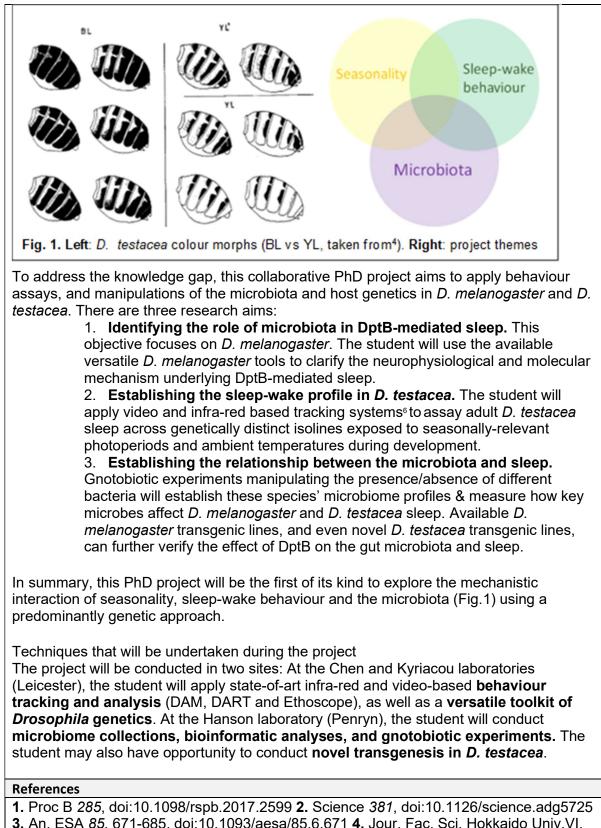
University of Leicester BBSRC MIBTP Studentship Project 2025-6 entry.

First Supervisor	Dr Ko-Fan Chen (he/him)
School/Department	Department of Genetics, Genomics and Cancer
	Sciences
Email	kc280@leicester.ac.uk
	https://www.kofanchenlab.net/

Second Supervisor	Professor Charalambos Kyriacou
School/Department	Department of Genetics, Genomics and Cancer Sciences
Email	cpk@leicester.ac.uk
Email	cpk@leicester.ac.uk

Additional Supervisor	Dr Mark Hanson Centre for Ecology and Conservation, University of Exeter <u>m.hanson@exeter.ac.uk</u>
	https://mahansonresearch.weebly.com/

Section 2 – Project Information


Project Title	A gut feeling for a sleepy season? Roles of gut microbiota in seasonality of sleep
Project Summary	

Sleep is conventionally thought to be "by the brain and for the brain". Yet, recent laboratory studies suggest sleep, immune system, and gut health regulate each other. This interaction between gut/immunity and sleep is less well understood in the wild. Seasonal and ecological variation exists for *Drosophila* immune genes¹, gut microbiota², and ecological traits such as body colour^{3,4}. Experiments using the genetic workhorse *Drosophila melanogaster* have further tied sleep to immune function and microbe control⁵. Importantly, sleep in the wild requires temporal alignment to annual transitions in photoperiod and temperature, which correlates with seasonal variation in immunity, the microbiota, and body colour. Whether genetic or microbiota variation contributes to seasonal sleep profile, or vice versa, is unclear.

Temperate *Drosophila* fly species encounter seasonal transitions of photoperiod and temperature across generations, providing an ideal model for understanding the temporal regulatory mechanisms underlying seasonal adaptation of sleep. Unlike *D. melanogaster, D. testacea* is a temperate mushroom-breeding fly occurring primarily in the late summer & fall, with different colour morphs showing seasonal^{3,4} and geographic³ patterns (Fig.1).

We have isolated wild-caught *D. testacea* lines with heritable colour variation, suggesting this seasonal body colour involves a genetic component. Recently, Hanson *et al* showed that *D. testacea* has lost a crucial immune gene, Diptericin B (DptB), which evolved to supress *Acetobacter* infection in fruit-feeding *Drosophila*. This loss may reflect the dietary switch to fungi since *Acetobacter* is abundant in gut microbiota of fruit-feeders, but almost non-existent in mushroom-feeding *Drosophila*². Increased gut *Acetobacter* is associated with reduced sleep in *D. melanogaster*. Intriguingly, we have found that *DptB* mutation in *D. melanogaster* also causes reduced sleep, and *D. testacea* sleep profile differs markedly from *D. melanogaster*.

Taken together, the *Drosophila* system boasts the powerful genetic tools of *D. melanogaster*, as well as natural variation in immune genes, gut microbes, seasonal photoperiod and temporal sleep profile. Using these tools, we will test if the sleep-controlling role of gut microbes relies on interactions with host immune genes and/or other factors.

3. An. ESA 85, 671-685, doi:10.1093/aesa/85.6.671 4. Jour. Fac. Sci. Hokkaido Univ.VI, Zool. 21 (1),1977. 21-30 5. Science 363, doi:10.1126/science.aat1650 6. eLife, 8, e38114